Sunday, March 26, 2023

Cass 6 Math ( Terminal Exam Questions )

 

Terminal Examination

Class : 6                                                                      F.M.: 100

Subject : Math                                                            P.M.: 40

1.    Answer the following questions. [10x1=10]

a.       Express the set in listing method y={odd number less than 40}

b.      Write the first multiples of 6=M6={…..}

c.       Define acute angles.

d.      Add 5m2n3+6m2n3

e.       Multiply :

f.        Divide :

g.       Find the perimeter of the following figure.

 


                6cm              5cm

 

                              4cm

h.      Find the factors of 18=F18=………..

i.         2003=……………..

j.         Write the formula: unit cost =…………

 

2.    Answer the following question. [17x2=34]

a.       List the element of x and y.

                X                            Y

                  1  2      4            6

                 3             5       7  8

 

b.      Write the set in listing method and its cardinal numbers.

P={square number less than 30}

n{P}=……………

c.       Define : a) unit set (or singleton set)

                b) Overlapping sets =……..

d.      Write the numerals using commas of these numerations: Five arab twenty five crore fifty four lakhs thirty five thousands.

e.       Add 5 with the sum of 7 and 8.

f.        Simplify :

g.       Find the prime factor of 48.

h.      Find the cube number of 8.

i.         Simplify :

j.         Write the decimal of these fractions :

k.       Find the product : 5.683.7

l.         Convert the following fraction into percent :

m.    If x=2, y=3, z=4, Find the value of 2x+4y-3z

n.      Simplify : 2x2+3y2+5x22y2

o.      Subtract 2x+3y from 5x+8y

 

3.    Answer the following questions. [14x4=56]

a.       From these expanded form write the numerals.

b.      Simplify :

c.       Find the HCF by factorization method of 30,45,60

d.      Find the LCM by division method of 18,30,45

e.       Find the cube root of 1728.

f.        Find the square foot of 2025.

g.       Write the first five equivalent fraction of 

h.      Simplify : 

i.         Simplify

j.         If the cost of 1 dozen bananas is Rs72 find the cost of 20 bananas.

k.       Multiply :- (2a+3b)(2a-3b)

l.         Construct the following angles by using compass pencil and ruler.

                                                               i.      900                  ii. 1050

m.    Calculate the size of unknown angles.

 

                                                               i.                                             ii.

 

                                                                  y

                     X       1200                               600

 


n.      Divide :

The end

Class 6 Byakaran Terminal Exam Question

q}dfl;s k/LIff

sIff M ^                                                k"0ff{ª\s M %)

ljifo M Jofs/0f                                 plQ0ff{ª\s M @)

;a} k|Zgx? clgjfo{ 5g\ .

!= ;j{gfd s]nfO{ elgG5 < o;sf k|sf/x? n]Vg'xf];\ . -%_

@= tnsf zAbx?dWo] cJoo zAb s'g x'g\< kQf nufO{ uf]nf] 3]/f nufpg'xf];\ .-%_

 3/, cufl8, xfdL, ltdL, /, ;Fu, snd, lxhf], lstfa, cxf] Û, a'af, kf], s]6f], efO, k9]/, eGbf, 9f]sf, ha, dg, cfTyf

 

#= ldNg] pbfx/0f 5fgL hf]8f ldnfpg'xf];\ . -%_

gfdof]uL                clg, klg, t/, jf

lqmofof]uL       t, lg, n, kf], Sof/]

;+of]hs         lt/, eGbf, cufl8, afx]s, l;t

lj:doflbaf]ws  6'Kn'Ss, cfh, otf, oxfF, u/]/

lgkft          cxf] Û, cfTyf Û, x/] Û, l5Ml5 Û, cfxf Û

 

$= tn lbOPsf pk;u{x? k|of]u u/L Ps Ps j6f zAb lgdf{0f ug'{xf];\ .

-@=%_

k|, ck, cg', lj, clw

 

%= tn lbOPsf k|Toox? k|of]u u/L Ps Ps h6f zAb lgdf{0f ug'{xf];\ .

-@=%_

Oof, cfjt, Os, cfxf, cSs8

 

^= pbfx/0fdf lbOPh:t} tLgj6f lqmofkb agfP/ n]Vg'xf];\ .-%_
vf M vfG5, vfof], vfg] 5 .

k9\, eg\, cfp, p7\, v]n\

 

&= tnsf vfnL 7fpFdf ldNg] ljelQm lrGx n]Vg'xf];\ .-%_

s_ cfh ========== tfhf ;dfrf/ s] 5<

v_ d}n] p; ==========sIffdf k9\b} u/]sf] b]v] .

u_ uf]7 ======= ufO{x? ============ aflx/ lgsfn .

3_ ltdL ===== lqms]6 v]N5f} <

ª_ l;sf/L ======d[u ====== nv]6\of] .

 

*= sf]i7sdf lbOPsf] ;+s]t cg';f/ jfSo kl/jt{g ug'{xf];\ . %

s_ ltdL 3/ hfpm . -cs/0f_

v_ pm sljtf n]Vg'eof] . -kb;+ult_

u_ d}n] sdn lsg]F . -ax'jrg_

3_ ltdL vf]Ng hfGb}gf} . -k|yd k'?if_

ª_ cfdfn] vfhf vfg'eof] . -k'lnª\u_

 

(= 7Ls pQ/ kQf nufO{ vfnL 7fpFdf eg'{xf];\ . -%_

s_ …dflg;Úsf] kof{ojfrL zAb ========xf] . -bfgj, dfgj, b]j_

v_ …;/nÚzAbsf] ljk/Ltfy{ zAb =========xf] . -g/d, sl7g, sdnf]_

u_ sfn zAbsf] =========cg]sfyL{ zAb xf] . -;do, 3/, 8/_

3_ t/sf/Lsf] ;dfj]Zo zAb =================xf] .-ef]ln, kl;{, s;L{_
ª_ …nfnÚsf] kof{ojfrL zAb =========xf] .-tftf], /ftf], nfUg]_

 

!)= sf]i7sdf lbOPsf] ;+s]tsf cfwf/df tnsf jfSox?nfO{ kl/jt{g ug'{xf];\ . -%_

s_ pgLx? cfpF5g\ . -;Defjgfy{_

v_ tF eft vfG5;\ . -cf1fy{_
u_ d~h'n] kf7 k9\5] . -c1ft_

3_ pgLx? cfpF5g\ . -ck"0f{ jt{dfg sfn_

ª_ p;n] k9\of] . -;fdfGo e"t_

 

!!= tnsf zAb ;d"xaf6 z'4 zAb 5fg]/ uf]nf] 3]/f nufpg'xf];\ . -%_

s_ lbbL        lblb    bLlb    bLbL 

v_ efph'       efph"  efpmh'  efpmh"

u_ cg';fzg    cg';f;g       cg'iffzg       cg'zf;g

3_ sS5fsfo{   sIffsfP{                sIffsfo{                s5fsfo{

 

;dfKt

 

 

Class 5 Nepali ( Terminal Exam Questions )

q}dfl;s k/LIff

sIff M %                                                k"0ff{ª\s M &%

ljifo M g]kfnL                                           plQ0ff{ª\s M #)

!= ;d"x …sÚdf lbOPsf zAbx?sf] ;d"x…vÚaf6 klxrfg ul/ n]Vg'xf];\ .  #

   s                       v

5nkmn                 /fd|f] 1fg

k|s[lt                   lrgf]

pT;j                  s'/fsfgL

lzNk                   l;k

;b1fg                 kj{

 

@= tn lbOPsf zAbnfO{ jfSodf k|of]u ug{'xf];\ . %

3dG8, ;ef, nf]safhf, gfua]nL, lgdf{0f

 

#= 7Ls eP -ü_ / a]7Ls eP -û_ lrGx nufpg'xf];\ . %

s_ cg'/f]w sljtf 8f=/fdk|;fb 1fjfnLn] n]v]sf x'g\ .

v_ 8';L hlGdPsf] 3/df 5f]/Lx? dfq lyP .

u_ ta/]h cfnd !! jif{sf] lyof] .

3_ t]n /fVg] sf7sf] ;fgf] efF8f]nfO{ xk]{ elgG5 .

ª_ nng, lbg]z / jfOaf 3/af6 ljBfno hfb} lyP .

 

$= pbfx/0fdf lbOPh:t} u/L jfSox?nfO{ hf]8\g'xf];\ .%

h:t} M d eft vfG5' . d xft w'G5' .

   Ö  d eft vfP/ xft w'G5' .

s_ efO ljBfno uof] . efO k':ts k9\of] .

v_ kfgL k¥of] . af6f] lxnf] eof] .

u_ /Ltf uLt ufpF5] . /Ltf gfR5] .

3_ xl/ emu8f u5{ . xl/ ?G5 .

ª_ afbn nfUof] . kfgL k¥of] .

 

%= pbfx/0fdf lbOP h:t} tnsf jfSonfO{ ;ª\ult ldnfP/ n]Vg'xf];\ . !)

h:t} M /f deft vfG5] . Ö /fd eft vfG5 .

s_ tkfO{ slxn] cfO;\ .

v_ dnfO{ 8/ nfUg'x'G5 .

u_ Zofd /fd|L 5 .

3_ dfOh" cfO{ .

ª_ ld; cfof] .

r_ km"nx? km"n]5 .

5_ ;fgf] a'af cfof] .

h_ pxfF sfd u5{ .

em_ clgtf uLt ufpFb} 5 .

`_ xfdL gfR5' .

 

^= tnsf jfSox?nfO{ cs/0fdf kl/jt{g ug'{xf];\ . -&=%_

s_ cfh kfgL knf{ .

v_ xfd|f kfp ljZj e|d0f ub{5g\ .

u_ ;"g, rfFbL, d'uf, df]tL cd"No 5g\ .

3_ efUo xfd|f] xftdf 5 .

ª_ pm cfh cfpnf .

 

&= tnsf jfSox?nfO{ ax'jrgdf kl/jt{g ug'{xf];\ . -&=%_

s_ efO ahf/ uof] .

v_ dfdf cfpg'eof] .

u_ p;n] hfgL hfgL cfkm\gf] egfOnfO{ ljr}df 6'ªUofof] .

3_ d';fnfO{ la/fnf]n] ;tfPsf] lyof] .

ª_ d]/f] 3/df ;fyL cfpg] s'/f lyof] .

 

*= tnsf vfnL 7fpFdf pko'Qm ljelQm a'emfpg] lrgf] e/ . %

- nfO{, n], nflu, af6, dfly _

s_ x's{bf] lj?jf ==============dfg'{ x'b}g .

v_ p;n] rDrf ===== eft vfof] .

u_ /Ltfn] k"hfsf ====== km:n l6kL .

3_ b'w ========= bxL aG5 .

ª_ 6]a'n =======lstfa 5 .

 

(= pbfx/0fdf lbOPh:t} u/L jfRo kl/jt{g ug'{xf];\ . %

h:t} M vfÖ vfOG5, vfOof], vfOg]5 .

k9\, eg\, a;\, ufp, lx8\

 

!)= pbfx/0fdf lbOPh:t} u/L ;fgf] hgfpg] zAb n]Vg'xf];\ . %

h:t} M dxsf]Ö l56f]

kfgLsf], w'nf]sf], km"nsf], ljifsf], 3/sf]

!!= pbfx/0fdf lbOPh:t} u/L k|Too nufP/ zAb agfpg'xf];\ . %

h:t} M ;'±k'qÖ ;'k'q

lj±1fg, pk±sf/, lg±aGw, ck±dfg, cg'±jfb

 

!@= tnsf ;a} k|Zgsf] 5f]6f] pQ/ lbg'xf];\ . -!%_

s_ afnssf ;fgf xftx? p7] eg] s] x'G5 <

v_ ta/]h efu]/ uPsf] 3/df dflg;n] p;nfO{ s] u/] <

u_ 8';Lsf] hGdn] s'g cefjsf] k"lt{ eof]<

3_ sDKo'6/ vf]n]/ xfª\dfn] s] u/L <

ª_ rf8kj{ slt k|sf/sf 5g\ <

 

!#= tnsf] cg'R5]b k9L ;f]lwPsf] k|Zgsf] pQ/ n]Vg'xf];\ . !)

   x]n]g s]n/sf] hGd ;g\ !**) h'g @@ sf lbg cd]l/sfdf eof] . pgL hlGdbf cToGt /fd|L / ;'Gb/L lyOg\ . pgsf ;a} cª\ux? :j:y lyP . pGgfO; dlxgfsL x'Fbf pgnfO{ ulDe/ /f]u nfUof] . To;kl5 pgL cfFvf gb]Vg] eOg\ . pgn] ;'Gg 5fl8g\ . pgsf] af]nL aGb eof] . o;/L z/L/sf dxTjk"0f{ cª\u sfd gnfUg] eP/ pgL k'/} ckfª\u algg\ .

k|Zgx? M

s_ x]n]gsf] hGd slxn] / sxFf eof]<

v_ pgL hlGdbf s:tL lyOg\<

u_ x]n]gnfO{ slt dlxgfsL x'Fbf /f]u nfUof]<

3_ pgL s] s] ug{ g;Sg] eOg\<

ª_ ckfª\u eg]sf] s] xf]<

 

!#= tn lbOPsf k|Zgsf] nfdf] pQ/ lbg'xf];\ . !)

s_ ;'lbgn] efG;fdf s] s] ;fdfg b]Vof]< gfd n]Vg'xf];\ .

v_ g]kfnL nf]s afhfx?sf] ;"rL agfpg'xf];\ .

;dfKt